3 research outputs found

    Exploring the applicability of biological and socioeconomic tools in developing EAFM plans for data absent areas : Spinner dolphin EAFM for Kalpitiya, Sri Lanka

    Get PDF
    Acknowledgements University of Aberdeen, UK and Bay of Bengal Large Marine Ecosystems (BOBLME) project are acknowledged for partial funding of this research.Peer reviewedPostprin

    Using high-frequency phosphorus monitoring for water quality management: a case study of the upper River Itchen, UK

    Get PDF
    Increased concentrations of phosphorus (P) in riverine systems lead to eutrophication and can contribute to other environmental effects. Chalk rivers are known to be particularly sensitive to elevated P levels. We used high-frequency (daily) automatic water sampling at five distinct locations in the upper River Itchen (Hampshire, UK) between May 2016 and June 2017 to identify the main P species (including filterable reactive phosphorus, total filterable phosphorus, total phosphorus and total particulate phosphorus) present and how these varied temporally. Our filterable reactive phosphorus (considered the biologically available fraction) data were compared with the available Environment Agency total reactive phosphorus (TRP) values over the same sampling period. Over the trial, the profiles of the P fractions were complex; the major fraction was total particulate phosphorus with the mean percentage value ranging between 69 and 82% of the total P present. Sources were likely to be attributable to wash off from agricultural activities. At all sites, the FRP and Environment Agency TRP mean concentrations over the study were comparable. However, there were a number of extended time periods (1 to 2 weeks) where the mean FRP concentration (e.g. 0.62 mg L−1) exceeded the existing regulatory values (giving a poor ecological status) for this type of river. Often, these exceedances were missed by the limited regulatory monitoring procedures undertaken by the Environment Agency. There is evidence that these spikes of elevated concentrations of P may have a biological impact on benthic invertebrate (e.g. blue-winged olive mayfly) communities that exist in these ecologically sensitive chalk streams. Further research is required to assess the ecological impact of P and how this might have implications for the development of future environmental regulations

    Sensitivity of the early life stages of a mayfly to fine sediment and orthophosphate levels

    Get PDF
    The ecological effects of interacting stressors within lotic ecosystems have been widely acknowledged. In particular, the ecological effects of elevated fine sediment inputs and phosphate have been identified as key factors influencing faunal community structure and composition. However, while knowledge regarding adult and larval life stage responses to environmental stressors has grown, there has been very limited research on their eggs. In this study, the eggs of the mayfly Serratella ignita (Ephemerellidae: Ephemeroptera) were collected and incubated in laboratory aquaria to hatching under differing concentrations of inert suspended sediment (SS) and orthophosphate (OP), individually and in combination. Results indicate that SS and OP have greater effects on egg hatching in combination than when either were considered in isolation. SS displayed a greater effect on egg survival than OP in isolation or when OP was added to elevated SS treatments. Egg mortality in control treatments was around 6% compared to 45% in treatments with 25 mg 1⁻Âč SS and 52% in 0.3 mg 1⁻Âč OP treatments. Even relatively modest levels of each stressor (10 mg 1⁻Âč SS; 0.1 mg 1⁻Âč OP), below national legal thresholds, had significant effects on egg survival to hatching. The results support calls for legal levels of SS to be reassessed and suggest that more research is required to assess the impacts of pollution on invertebrate egg development given their different sensitivity and exposure pathways compared to other life stages
    corecore